Pearson Edexcel

Mark Scheme (Results)

November 2021

Pearson Edexcel International GCSE
In Chemistry (4CH1) Paper 1C and
Science (Double Award) (4SD0) Paper 1 C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2021
Question Paper Log Number P66058RA
Publications Code 4CH1_1C_2111_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (i)	A A is the correct answer because A contains one element and the atoms are not joined to other atoms. B is incorrect because B contains molecules of an element. C is incorrect because C contains molecules of a compound D is incorrect. D contains an element but the atoms are joined together to form a giant covalent structure.		1
(ii)	C is the correct answer because C contains atoms of C iwo different elements chemically bonded together. A is incorrect because A is an element. B is incorrect because B is an element. D is incorrect because D is an element.		
(b)	(iii)		

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
2 (a) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
fluorine has the fewest number of shells / energy levels \\
C \\
C is the correct answer because iodine is in period 5 therefore has 5 shells and group 7 therefore has 7 electrons in its outer shell. \\
A is incorrect because arsenic has 5 shells and 4 electrons in its outer shell. \\
B is incorrect because selenium has 4 shells and 6 electrons in its outer shell. \\
\(D\) is incorrect because the number of shells and number of electrons in the outer shell in iodine have been reversed.
\end{tabular} \& \begin{tabular}{l}
ALLOW fluorine has the fewest number of electrons \\
IGNORE references to protons, neutrons, atomic number and mass number
\end{tabular} \& 1

1

\hline | (b) (i) |
| :--- |
| (ii) | \& | M1 does not need heating M2 reacts very quickly |
| :--- |
| M1 as the atoms get bigger |
| M2 the reactivity decreases | \& | must imply quicker reaction than chlorine |
| :--- |
| ACCEPT reverse argument | \& 2

2

\hline \& \& \& 6

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
3 (a) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
oxygen \\
(hydrated) iron (III) oxide
\end{tabular} \& \begin{tabular}{l}
IGNORE air \\
ACCEPT \(\mathrm{O}_{2}\) \\
ALLOW iron oxide /ferric oxide \\
REJECT incorrect oxidation states of iron
\end{tabular} \& 1

1

\hline | (b) (i) |
| :--- |
| (ii) |
| (iii) | \& | M1 plastic acts as a barrier |
| :--- |
| M2 therefore stops oxygen / water getting to the iron |
| galvanising |
| M1 zinc is more reactive than iron /higher in the reactivity series than iron |
| M2 therefore reacts / oxidises / corrodes in preference to iron | \& | ALLOW forms a protective layer |
| :--- |
| ALLOW air in place of oxygen |
| ALLOW sacrificial protection |
| IGNORE sacrificial method |
| IGNORE references to rates of reaction |
| REJECT references to zinc rusting | \& 2

1

2

\hline \& \& \& 7

\hline
\end{tabular}

Question number	Answer	Notes	Marks
4 (a) (i)	14		1
(ii)	2.5	REJECT any charge shown	1
		IGNORE brackets	
(iii)	M1 same number of protons	IGNORE references to numbers of electrons	2
	M2 different numbers of neutrons	REJECT incorrect numbers of electrons	2
(iv)	M1 (three) more electrons than protons		
	M2 electrons have a negative charge and protons have a positive charge		
(b)	M1 $(98.930 \times 12)+(1.070 \times 13) \div 100$		2
	M2 12.01	ALLOW 1 mark for	
		1201.07 if not divided by 100 as long as given	
		to 2 dp	
		correct answer to 2	
		decimal places with or	
		without working scores 2 marks.	
			8

Question number	Answer	Notes	Marks	
5 (c) (i)	copper(II) oxide	ALLOW copper oxide /CuO REJECT copper (I) oxide	1	
	(ii)	(he powder has a greater surface area (than larger pieces of copper)	ALLOW the powder reacts more quickly (than larger pieces of copper)	1
(iii)	M1 argon/it has a full outer shell of electrons M2 therefore does not lose or gain (or share) electrons	ALLOW has eight outer shell electrons	2	

Question number	Answer	Notes	Marks
6 (a) (i) (ii) (iii) (iv) (v) (vi)	Y		1
	V		1
	W		1
	X		1
	displayed formula of but-1-ene or methylpropene		1
	Any two from		2
	M1 same general formula	ALLOW same empirical formula	
	M2 similar chemical properties	ALLOW they react in a similar way/same chemical properties	
	M3 trend in physical properties	ACCEPT named physical property e.g. trend in boiling points	
	M4 each consecutive member differs by a CH_{2} group		
(b) (i)	$\begin{array}{llll} \text { M1 } & \frac{38.7}{12} & \frac{9.7}{1} & \frac{51.6}{16} \end{array}$	0 marks if upside down calculation or use of atomic numbers	2
	$\begin{array}{llll}\text { OR } & 3.225 & 9.7 & 3.225\end{array}$		
	M2 (divide by smallest) $\begin{array}{lll} 1 & 3 & 1 \end{array}$		
	M1 Mr of $\mathrm{CH}_{3} \mathrm{O}=31$ M2 (62 $\div 31=2$ so molecular formula is) $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}$	$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}$ without working scores 2	2
			11

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
(c) (i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
M1 one pair of electrons between the nitrogen and each hydrogen \\
M2 two non-bonding electrons on the nitrogen \\
M1 (electrostatic) attraction between nuclei \\
M2 and shared pair(s) of electrons \\
OR \\
M1 (electrostatic) attraction between shared pair(s) of electrons \\
M2 and nuclei (of both atoms) \\
M1 forces between molecules/intermolecular forces (of attraction) are weak \\
M2 and therefore require little energy to overcome
\end{tabular} \& \begin{tabular}{l}
M2 dep on M1 \\
nuclei must be plural \\
ALLOW bonding pair(s) of electrons \\
ALLOW bonding pair(s) of electrons nuclei must be plural \\
ALLOW intermolecular bonds are weak \\
IGNORE less energy \\
Mention of breaking covalent bonds \(=0\)
\end{tabular} \& 2

2

2

\hline \& \& \& 14

\hline
\end{tabular}

Question number	Answer	Notes	Marks
9 (a) (i)	M1 and M2 all points correctly plotted to the nearest half a square	deduct 1 mark for each error	2
(ii)	smooth curve of best fit		1
(iii)	An explanation that links any two of the following points		2
	M1 polystyrene is an insulator		
	M2 reduces thermal energy/heat coming in from the surroundings OWTTE		
	M3 temperature decrease will be closer to true value OWTTE	ALLOW results will be more accurate	
(iv)	Any one from:		1
	M1 the student recorded the temperature before adding the sodium carbonate / the temperature had not stopped decreasing OWTTE	ALLOW less than 0.5 g of/not enough sodium carbonate was added	
	M2 the student forgot to the stir the mixture		
(v)	(two) results at the end are the same	ALLOW the temperature stops decreasing	1
(vi)	An explanation that links together		2
	M1 the reaction is endothermic and either of the following points	REJECT exothermic for both marks	
	M2 it takes in thermal energy/heat from the surroundings OR		
	M3 as shown by the temperature decrease (of the reaction mixture)	ALLOW references to cooling	
		No M2 or M3 if the statements contradict one another	

Question number	Answer	Notes	Marks
9 (b) (i)	to prevent acid / liquid / solution splashing out		1
(ii)	M1 $\left(M_{r}\right.$ of sodium carbonate $)=106$	ALLOW ecf from M1 M2 subsumes M1 ALLOW answer from M2 $\text { x } 44$ answer of $0.88(\mathrm{~g})$ with or without working scores 3	3
	M2 (moles of sodium carbonate $2.12 \div 106=$) 0.02		
	M3 (mass of carbon dioxide $0.02 \times 44=$) $0.88(\mathrm{~g})$		
(iii)	Any one from:		1
	M1 the sodium carbonate is impure		
	M2 some of the carbon dioxide dissolves in the acid/solution		
			14

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
10 (a) (i) \\
(ii) \\
(iii)
\end{tabular} \& fractional distillation evaporation condensation \& \begin{tabular}{l}
ALLOW distillation \\
REJECT simple distillation \\
ALLOW evaporating /boiling \\
ALLOW condensing
\end{tabular} \& 1

1
1

\hline (b) (i) \& | M1 (mass ethanol $15.50 \times 0.79=$) $12.245(\mathrm{~g})$ |
| :--- |
| M2 (moles ethanol $=12.245 \div 46=$) $0.266(\mathrm{~mol})$ |
| OR |
| M1 $\left(1 \mathrm{~cm}^{3}\right.$ ethanol $\left.=0.79 \div 46=\right) 0.0172 \mathrm{~mol}$ |
| M2 $\left(15.5 \mathrm{~cm}^{3}\right.$ ethanol $\left.=0.0172 \times 15.5=\right) 0.267(\mathrm{~mol})$ |
| answer from (b)(i) $\times 6 \times 10^{23}$ |
| e.g. $\left(0.266 \times 6.0 \times 10^{23}=\right) 1.60 \times 10^{23}$ | \& | ALLOW any number of significant figures except 1 |
| :--- |
| ALLOW ecf from M1 |
| ALLOW any number of significant figures except 1 |
| ALLOW ecf from M1 |
| correct answer with or without working scores 2. |
| ALLOW any number of significant figures except 1 |
| ALLOW answer in ordinary form | \& 2

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
10 (c) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
M1 add anhydrous copper sulfate \\
M2 turns blue \\
M1 measure boiling point \\
M2 is \(100^{\circ} \mathrm{C}\)
\end{tabular} \& \begin{tabular}{l}
ALLOW add white copper sulfate \\
M2 dependent on M1 \\
ALLOW \\
M1 add anhydrous cobalt chloride/ cobalt chloride paper \\
M2 turns pink \\
M2 dependent on M1 \\
ALLOW melting/freezing point is \(0^{\circ} \mathrm{C}\) for both marks
\end{tabular} \& 2 \\
\hline \begin{tabular}{l}
10 (d) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\(M 1 \Delta T=49.5^{\circ} \mathrm{C}\) \\
\(M 2 Q=m c \Delta T\) OR \(100 \times 4.2 \times 49.5\) \\
M3 20790 J \\
M1 20.790 kJ \\
M2 \((20.790 \div 0.0200=)-1039.5(\mathrm{~kJ} / \mathrm{mol})\)
\end{tabular} \& \begin{tabular}{l}
correct answer with or without working scores 3 \\
ALLOW ecf from M1 \\
ALLOW 20800 \\
ALLOW answer to 10(c)(i)
\[
\div 1000
\] \\
ALLOW any number of significant figures from 3 \\
ALLOW M1 \(\div 0.0200\) as long as answer is negative. \\
REJECT incorrect rounding. \\
REJECT positive answer.
\end{tabular} \& 3

2

\hline \& \& \& 15

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
11 (a) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
displacement \\
(manganese) chromium cadmium tin
\end{tabular} \& ALLOW redox \& \[
1
\]
\[
1
\] \\
\hline (b) \& \begin{tabular}{l}
(copper and magnesium sulfate) \\
M1 no colour change \\
M2 copper is less reactive than magnesium ORA /copper cannot displace magnesium \\
(zinc and iron sulfate) \\
M3 zinc turns (from light grey to) dark grey \\
M4 solution turns (from green to) colourless \\
M5 zinc is more reactive than iron ORA/ zinc displaces iron
\end{tabular} \& \begin{tabular}{l}
ALLOW copper is below magnesium in the reactivity series ORA \\
IGNORE copper and magnesium sulfate do not react \\
M2 dep on M1 \\
ALLOW zinc becomes coated in a dark grey metal \\
ALLOW zinc is above iron in the reactivity series ORA \\
ALLOW zinc reduces iron ions (ignore charge given as long as the charge is positive)
\end{tabular} \& 5 \\
\hline \begin{tabular}{l}
(c) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
Any two from \\
M1 concentration of dilute sulfuric acid \\
M2 temperature \\
M3 surface area of the metal \\
calcium sulfate forms a layer / coating around the calcium metal
\end{tabular} \& \begin{tabular}{l}
ALLOW size of piece of metal \\
ALLOW calcium sulfate prevents the sulfuric acid coming into contact with calcium.
\end{tabular} \& 2

1

\hline
\end{tabular}

(d)	M1 (moles of aluminium =) $1 \div 27$ OR 0.0370 moles M2 (moles of sulfuric acid required $=\frac{0.0370 \times 3}{2}=$) 0.0556 moles (and there is more moles of sulfuric acid) OR M1 (moles of aluminium required $=$) 0.0400 M2 (mass of aluminium required $=27 \times 0.0400=$) 1.08 g (and there is less than 1.08 g)	ALLOW any number of significant figures except 1 ALLOW 0.0555 if candidate has used rounded value of 0.0370 moles	2
			12

